CHAPTER 4 Forces and Newton's Laws of Motion

Figure 4.1 Newton's laws of motion describe the motion of the dolphin's path. (Credit: Jin Jang)

Chapter Outline

4.1 Force

- 4.2 Newton's First Law of Motion: Inertia
- 4.3 Newton's Second Law of Motion
- 4.4 Newton's Third Law of Motion

INTRODUCTION Isaac Newton (1642–1727) was a natural philosopher; a great thinker who combined science and philosophy to try to explain the workings of nature on Earth and in the universe. His laws of motion were just one part of the monumental work that has made him legendary. The development of Newton's laws marks the transition from the Renaissance period of history to the modern era. This transition was characterized by a revolutionary change in the way people thought about the physical universe. Drawing upon earlier work by scientists Galileo Galilei and Johannes Kepler, Newton's laws of motion allowed motion on Earth and in space to be predicted mathematically. In this chapter you will learn about force as well as Newton's first, second, and third laws of motion.

4.1 Force

Section Learning Objectives

By the end of this section, you will be able to do the following:

- Differentiate between force, net force, and dynamics
- Draw a free-body diagram

Section Key Terms

dynamics	external force	force
free-body diagram	net external force	net force

Defining Force and Dynamics

Force is the cause of motion, and motion draws our attention. Motion itself can be beautiful, such as a dolphin jumping out of the water, the flight of a bird, or the orbit of a satellite. The study of motion is called kinematics, but kinematics describes only the way objects move—their velocity and their acceleration. **Dynamics** considers the forces that affect the motion of moving objects and systems. Newton's laws of motion are the foundation of dynamics. These laws describe the way objects speed up, slow down, stay in motion, and interact with other objects. They are also universal laws: they apply everywhere on Earth as well as in space.

A force pushes or pulls an object. The object being moved by a force could be an inanimate object, a table, or an animate object, a person. The pushing or pulling may be done by a person, or even the gravitational pull of Earth. Forces have different magnitudes and directions; this means that some forces are stronger than others and can act in different directions. For example, a cannon exerts a strong force on the cannonball that is launched into the air. In contrast, a mosquito landing on your arm exerts only a small force on your arm.

When multiple forces act on an object, the forces combine. Adding together all of the forces acting on an object gives the total force, or **net force**. An **external force** is a force that acts on an object within the system *from outside* the system. This type of force is different than an internal force, which acts between two objects that are both within the system. **The net external force** combines these two definitions; it is the total combined external force. We discuss further details about net force, external force, and net external force in the coming sections.

In mathematical terms, two forces acting in opposite directions have opposite *signs* (positive or negative). By convention, the negative sign is assigned to any movement to the left or downward. If two forces pushing in opposite directions are added together, the larger force will be somewhat canceled out by the smaller force pushing in the opposite direction. It is important to be consistent with your chosen coordinate system within a problem; for example, if negative values are assigned to the downward direction for velocity, then distance, force, and acceleration should also be designated as being negative in the downward direction.

Free-Body Diagrams and Examples of Forces

For our first example of force, consider an object hanging from a rope. This example gives us the opportunity to introduce a useful tool known as a **free-body diagram**. A free-body diagram represents the object being acted upon—that is, the free body—as a single point. Only the forces acting *on* the body (that is, external forces) are shown and are represented by vectors (which are drawn as arrows). These forces are the only ones shown because only external forces acting on the body affect its motion. We can ignore any internal forces within the body because they cancel each other out, as explained in the section on Newton's third law of motion. Free-body diagrams are very useful for analyzing forces acting on an object.

Figure 4.2 An object of mass, *m*, is held up by the force of tension.

Figure 4.2 shows the force of tension in the rope acting in the upward direction, opposite the force of gravity. The forces are indicated in the free-body diagram by an arrow pointing up, representing tension, and another arrow pointing down, representing gravity. In a free-body diagram, the lengths of the arrows show the relative magnitude (or strength) of the forces. Because forces are vectors, they add just like other vectors. Notice that the two arrows have equal lengths in Figure 4.2, which means that the forces of tension and weight are of equal magnitude. Because these forces of equal magnitude act in opposite directions, they are perfectly balanced, so they add together to give a net force of zero.

Not all forces are as noticeable as when you push or pull on an object. Some forces act without physical contact, such as the pull of a magnet (in the case of magnetic force) or the gravitational pull of Earth (in the case of gravitational force).

In the next three sections discussing Newton's laws of motion, we will learn about three specific types of forces: friction, the normal force, and the gravitational force. To analyze situations involving forces, we will create free-body diagrams to organize the framework of the mathematics for each individual situation.

TIPS FOR SUCCESS

Correctly drawing and labeling a free-body diagram is an important first step for solving a problem. It will help you visualize the problem and correctly apply the mathematics to solve the problem.

Check Your Understanding

- 1. What is kinematics?
 - a. Kinematics is the study of motion.
 - b. Kinematics is the study of the cause of motion.
 - c. Kinematics is the study of dimensions.
 - d. Kinematics is the study of atomic structures.
- 2. Do two bodies have to be in physical contact to exert a force upon one another?

- a. No, the gravitational force is a field force and does not require physical contact to exert a force.
- b. No, the gravitational force is a contact force and does not require physical contact to exert a force.
- c. Yes, the gravitational force is a field force and requires physical contact to exert a force.
- d. Yes, the gravitational force is a contact force and requires physical contact to exert a force.
- 3. What kind of physical quantity is force?
 - a. Force is a scalar quantity.
 - b. Force is a vector quantity.
 - c. Force is both a vector quantity and a scalar quantity.
 - d. Force is neither a vector nor a scalar quantity.
- 4. Which forces can be represented in a free-body diagram?
 - a. Internal forces
 - b. External forces
 - c. Both internal and external forces
 - d. A body that is not influenced by any force

4.2 Newton's First Law of Motion: Inertia

Section Learning Objectives

By the end of this section, you will be able to do the following:

- Describe Newton's first law and friction, and
- Discuss the relationship between mass and inertia.

Section Key Terms

friction	inertia	law of inertia
mass	Newton's first law of motion	system

Newton's First Law and Friction

Newton's first law of motion states the following:

- 1. A body at rest tends to remain at rest.
- 2. A body in motion tends to remain in motion at a constant velocity unless acted on by a net external force. (Recall that *constant velocity* means that the body moves in a straight line and at a constant speed.)

At first glance, this law may seem to contradict your everyday experience. You have probably noticed that a moving object will usually slow down and stop unless some effort is made to keep it moving. The key to understanding why, for example, a sliding box slows down (seemingly on its own) is to first understand that a net external force acts on the box to make the box slow down. Without this net external force, the box would continue to slide at a constant velocity (as stated in Newton's first law of motion). What force acts on the box to slow it down? This force is called **friction**. Friction is an external force that acts opposite to the direction of motion (see Figure 4.3). Think of friction as a resistance to motion that slows things down.

Consider an air hockey table. When the air is turned off, the puck slides only a short distance before friction slows it to a stop. However, when the air is turned on, it lifts the puck slightly, so the puck experiences very little friction as it moves over the surface. With friction almost eliminated, the puck glides along with very little change in speed. On a frictionless surface, the puck would experience no net external force (ignoring air resistance, which is also a form of friction). Additionally, if we know enough about friction, we can accurately predict how quickly objects will slow down.

Now let's think about another example. A man pushes a box across a floor at constant velocity by applying a force of +50 N. (The positive sign indicates that, by convention, the direction of motion is to the right.) What is the force of friction that opposes the motion? The force of friction must be -50 N. Why? According to Newton's first law of motion, any object moving at constant velocity has no net external force acting upon it, which means that the sum of the forces acting on the object must be zero. The mathematical way to say that no net external force acts on an object is $\mathbf{F}_{net} = 0$ or $\Sigma \mathbf{F} = 0$. So if the man applies +50 N of force, then the force of friction must be -50 N for the two forces to add up to zero (that is, for the two forces to *cancel* each